

LA-UR-20-26690

Approved for public release; distribution is unlimited.

Title: Improving Backlighter Design for Iron Opacity Measurements at the

National Ignition Facility

Author(s): Gerez, Kyzer Rabuya

Urbatsch, Todd James Vinyard, Natalia Sergeevna

Intended for: Research group meeting at University of Texas at Austin

Issued: 2020-08-28

Improving Backlighter Design for Iron Opacity Measurements at the National Ignition Facility

Kyzer Gerez^{1,2}, Todd Urbatsch¹, Natalia Vinyard¹

¹Los Alamos National Laboratory

X Theoretical Design Integrated Design & Assessment

²Oregon State University

LA-UR-XXXXXX

Model-predicted location of the sun's radiation-convection boundary disagrees with helioseismology observations

- Arbitrary 10-20% opacity increase of the materials in this region would resolve this disagreement
 - $T \approx 195 \text{ eV}$; $n_e \approx 4 \times 10^{22} \text{ cm}^{-3}$
- Z machine experiments show higher iron opacities at these conditions compared to the model opacities
 - These results provide half the opacity adjustment needed to restore agreement

Perform iron opacity measurements at the NIF at solar interior conditions

- First measurements carried out in 2017 at less extreme conditions
 - NIF and Z results at these conditions are in agreement
- Moving towards experiments at higher T and n_e
 - Stronger backlighter needed to overcome higher hohlraum and sample self-emission

$$T \approx 150 \text{ eV}; n_e \approx 8.4 \times 10^{21} \text{ cm}^{-3}$$

Investigate backlighter design using Cassio with implicit Monte Carlo radiation transport

- Cassio is a multidimensional, multi-material, Eulerian, massively parallel radiation-hydrodynamics code
- 3T, Multigroup IMC in 1DS using the laser package, SESAME EOS library, and opacity data gathered from the TOPS code
- Variations of the current backlighter design were simulated
 - Capsule thickness
 - Linear density gradient
 - Triangular density gradient
- Results extracted using a surface tally
 - Tally calculates angular fluence in time bins

$$\circ \ \varphi = \frac{\varphi_n - \varphi_{n-1}}{t_n - t_{n-1}} \ [GW/sr]$$

Increasing thickness from 19 µm to 21 µm leads to a 15 percent increase in the peak flux

Adding a density gradient has a minimal effect on backlighter performance

Case	Peak Angular Flux (GW/sr)
Constant Density	20,774
Linear Gradient	20,640
Triangular Gradient	21,182

Peak angular flux slightly increases with the slope of the linear density gradient

Linear Density Gradient Parameters		
$ ho_{min}$	$ ho_{max}$	Peak Angular Flux (GW/sr)
1.300	1.300	20,773
0.990	1.070	20,640
0.863	1.195	20,717
0.356	1.695	20,721

Conclusions & Future Work

- Increasing backlighter thickness from 19 um to 21 um raises the peak flux by 15%
- Adding a density gradient may not significantly change signal output from the backlighter
- 2D simulations are needed to model closer-to-design problems

Extra Slides

HYDRA results vs. measurements

Figure 2: Measured backlighter flux and pre-shot model; Measured spectra (DANTE and VIRGIL).

